COMMUNICATIONS TO THE EDITOR

On the Supposed Formation of Extraordinary Dipositive Carbonium Ions in Sulfuric Acid

Sir:

Hart and Fish¹⁻³ have presented evidence that trichloromethylmesitylene (I) ionizes in sulfuric acid with the formation of the dicarbonium ion II, according to eq. 1, and that pentamethyltrichlormethylbenzene

and trichlormethylprehnitene behave in a similar manner. They claim that all three compounds give a fivefold depression of the freezing point of sulfuric acid ($\nu = 5$), that conductance measurements show the formation of two hydrogen sulfate ions ($\gamma = 2$) from each molecule of solute, and that 2 moles of hydrogen chloride are swept from the sulfuric acid solutions by a current of dry nitrogen.

Although we have confirmed the cryoscopic and conductometric measurements on trichlormethylmesitylene we do not agree with Hart and Fish's interpretation of these results.

We find from conductometric and cryoscopic studies of solutions of HCl in 100% H₂SO₄ that it is not a nonelectrolyte as required by eq. 1 but that per mole it produces almost 1 mole of hydrogen sulfate ion and almost 3 moles of particles. We conclude that it is almost quantitatively ionized in dilute solution according to the equation

$$HCl + 2H_2SO_4 \longrightarrow HSO_3Cl + H_3O^+ + HSO_4^-$$
(2)

The freezing point depression and electrical conductivities of sulfuric acid solutions of I are almost identical with those of mesitoyl chloride; i.e., the latter compound also gives $\nu = 5$ and $\gamma = 2$. The formation of the mesitoyl ion $((CH_3)_3C_6H_2CO^+)$ from mesitoyl chloride was shown by the ultraviolet absorption spectrum (λ_{max} 2820 Å., (ϵ_{max} 20,900)). The only reasonable interpretation of these results is that mesitoyl chloride ionizes according to eq. 3. Again we note that

$$(CH_3)_3C_6H_2COC1 + 3H_2SO_4 \longrightarrow (CH_3)_3C_6H_2CO^+ + HSO_3C1 + H_3O^+ + 2HSO_4^- (3)$$

HCl reacts with sulfuric acid as in (2). However I does not give the mesitoyl ion as claimed recently by Deno, Friedman, and Mockus⁴ as this would require $\nu = 9 \text{ and } \gamma = 3.$

$$I + 4H_2SO_4 \longrightarrow (CH_3)_3C_6H_2CO^+ + 3HSO_3Cl + 2H_3O^+ + 3HSO_4^- (4)$$

We suggest that I ionizes to give the mesityldichlorocarbonium ion (eq. 5). In support of this suggestion $I + 3H_2SO_4 \longrightarrow (CH_3)_3C_6H_2CCl_2^+ + HSO_3Cl + H_3O^+ +$ $2HSO_4^-$ (5)

we find that only 1 mole of HCl can be swept out of the solution rapidly (i.e., in about 0.5 hr.) by dry nitrogen although further HCl, in fact even more than 1 additional mole, can be swept out by continued passage of dry nitrogen for several hours. Although we believe that the HCl is present in sulfuric acid very largely in the form of HSO₃Cl, it is nevertheless removed as HCl by dry nitrogen as a consequence of the reversal of equilibrium (2) which lies largely but not completely on the right-hand side. The removal of more than 1 mole of HCl means that the cation $(CH_3)_3$ - $C_6H_2CCl_2^+$ reacts further and this is substantiated by the fact that during the sweeping out of HCl the color of the solution changes from red to yellow. The sweeping out experiments are complicated, however, by the fact that the rate at which HCl is removed is markedly increased by the presence of very small amounts of water in the sulfuric acid, and further studies of this reaction are needed.

DEPARTMENT OF CHEMISTRY R. J. GILLESPIE MCMASTER UNIVERSITY HAMILTON. ONTARIO DEPARTMENT OF CHEMISTRY E. A. ROBINSON UNIVERSITY OF TORONTO TORONTO, ONTARIO

Received October 3, 1964

The Supposed ArC2+Cl Ions

Sir:

Hart and Fish¹ reported that three different α, α, α trichloropolymethylbenzenes ionized to dipositive cations of the formula $(aryl)C^{2+}Cl$ in 100% H₂SO₄. The evidence was based on cryoscopic studies, conductometric studies, HCl evolution, and n.m.r. spectra.

The interpretation of the first three lines of evidence was based on the untested assumption that HCl was inert in 100% H2SO4. Gillespie and Robinson now report in the immediately preceding communication that HCl establishes an equilibrium with ClSO₃H that is largely in favor of ClSO₃H. This one fact invalidates the first three lines of evidence and leads Gillespie and Robinson to propose that the product is actually Ar- C^+Cl_2 formed according to the equation

 $ArCCl_3 + 3H_2SO_4 = ArC^+Cl_2 + ClSO_3H + H_3O^+ + 2HSO_4^-$

We have investigated the n.m.r. spectra of solutions of ArCCl₃ in acids ranging from 90% H₂SO₄ to 30% $SO_3-70\%$ H₂SO₄ for the case in which Ar is the 2,4,6trimethylphenyl group. The results have been compared with the n.m.r. spectra of $ArCOOH_2^+$ and $ArCO^+$, which were available from a similar set of studies on ArCOOH solutions.² The most surprising fact is that the n.m.r. spectrum reported for ArC²⁺Cl is identical with that of $ArCOOH_2^+$, and it is concluded

⁽¹⁾ H. Hart and R. W. Fish, J. Am. Chem. Soc., 80, 5894 (1958).

⁽²⁾ H. Hart and R. W. Fish, ibid., 82, 5419 (1960).

⁽³⁾ H. Hart and R. W. Fish, *ibid.*, 83, 4460 (1961).

⁽⁴⁾ N. C. Deno, N. Friedman, and J. Mockus, private communication.

⁽¹⁾ H. Hart and R. W. Fish, J. Am. Chem. Soc., 80, 5894 (1958); 82, 5419 (1960); 83, 4460 (1961).
(2) N. Deno, C. U. Pittman, Jr., and M. J. Wisotsky. *ibid.*, 86, 4370

^{(1964).}

that Hart and Fish were actually observing Ar-COOH $_2^{+,3}$

Before resolving this confusing situation, it is well to explain some of the problems in the n.m.r. studies. Concentrations of $ArCOOH_2^+$ and $ArCO^+$ are equal in 97% H₂SO₄.^{2,4} Thus minor changes in the acidity in this region produce major changes in the n.m.r. spectrum. Furthermore, addition of the 5–10% of $ArCCl_3$ (or ArCOOH) required for the n.m.r. measurements produces a large decrease in the effective acidity, the exact amount being difficult to estimate. With these difficulties in mind, the results were as follows.

96% H_2SO_4 .—Addition of 5% ArCCl₃ to 96% H_2SO_4 produces an n.m.r. spectrum that is identical with that of ArCOOH₂⁺ at the first observation, 2 min. after mixing at 25°. The identity can be unequivocally demonstrated by addition of ArCOOH to the ArCCl₃ solution and showing that the bands of ArCOOH₂⁺ at 2.34, 2.43, and 7.08 are exactly reproduced.

Addition of 10% ArCCl₃ to 99% H₂SO₄ produces an identical spectrum and it is presumed that the reaction of ArCCl₃ with H₂SO₄ has effectively lowered the acidity to the neighborhood of 96% H₂SO₄. We believe that this is what happened in Hart and Fish's experiment.

99% H_2SO_4 .—An equimolar mixture of ArCCl₃ and ArCOOH can be added to 5% SO₃–95% H_2SO_4 to produce immediately the n.m.r. spectrum of ArCO⁺. There is no hint of any second species so that the Ar-CCl₃ must be immediately solvolyzing to ArCO⁺ and the effective acidity must be in the neighborhood of 99% H_2SO_4 . The rate of conversion of ArCCl₃ to ArCO⁺ is orders of magnitude faster than the rates of formation of ArCO⁺ reported by Hart and Roobal⁵ based on studies of the change in visible and ultraviolet absorption spectra with time. Although there would appear to be a direct conflict of results, it is possible that the large amounts of ClSO₃H and HCl may catalyze the solvolysis. Clarification of this matter will require further study.

30% SO₃-70% H₂SO₄.—Addition of 5% ArCCl₃ to 30% SO₃-70% H₂SO₄ produces a new species that is neither ArCOOH₂⁺ nor ArCO⁺. The n.m.r. bands of the new species are at 2.60, 2.94, and 7.47 p.p.m. with areas of 3:6:2. The band positions of ArCO⁺ are at 2.60, 2.73, and 7.41 p.p.m.² so that the two species are clearly distinct although the band position of the *p*-methyl group is identical in each spectrum.

It does not seem likely that a structure such as Ar-C²⁺Cl could produce a spectrum so close to that of ArCO⁺. The positive charge on carbonium ions always causes large downfield shifts in the n.m.r. band positions⁶ and a second positive charge should produce a comparable further shift. In any event, the n.m.r. spectrum is in accord with expectations for a monopositive cation and Gillespie and Robinson's ArC+Cl₂ is a likely candidate. The new species is thus provisionally assigned the ArC+Cl₂ structure.

100% H_2SO_4 .—The most revealing of the n.m.r. experiments are those in which 5–10% ArCCl₃ is added to 5% SO₃–95% H₂SO₄. It is possible to achieve systems

(4) W. S. Schubert, J. Donohue, and J. D. Gardner, J. Am. Chem. Soc., **76**, 9 (1954).

(6) N. Deno, Progr. Phys. Org. Chem., 2, 129 (1964).

in which the n.m.r. spectrum of ArC^+Cl_2 is immediately formed, but which shifts to the spectrum of $ArCO^+$ with a half-time of 30 min. for conversion at 25°. Throughout this shift, the n.m.r. bands of ArC^+Cl_2 and $ArCO^+$ remain completely distinct with no change other than the diminution of the ArC^+Cl_2 bands and the rise of those of $ArCO^+$. After several hours, the spectrum of $ArCO^+$ is obtained without hint of any extraneous bands.

It is important to recognize that the n.m.r. spectrum of this new species, provisionally ArC^+Cl_2 , was not reported in any of the papers of Hart and Fish. Thus the report that the n.m.r. spectrum of stable salts of ArC^2+Cl in SO₂ is the same as that of the ArC^2+Cl ion in $H_2SO_4^7$ raises serious questions regarding their work on the stable salts.

The above evidence pertains exclusively to the case where Ar is the 2,4,6-trimethylphenyl group. The other two cases of supposed $ArC^{2+}Cl$ ions are under study.

Acknowledgment.—We are grateful to the Petroleum Research Fund of the American Chemical Society for support of this work and to the National Science Foundation for funds to purchase the Varian A-60 n.m.r. spectrometer.

(7) H. Hart and J. S. Fleming, Tetrahedron Letters, 983 (1962).

DEPARTMENT OF CHEMISTRY	N. C. Deno
WHITMORE LABORATORY	Norman Friedman
THE PENNSYLVANIA STATE UNIVERSITY	Joseph Mockus
UNIVERSITY PARK, PENNSYLVANIA	-

Received October 14, 1964

On Carbonium Ions in Chlorosulfuric Acid

Sir:

It has been claimed previously¹ that polymethyltrichloromethylbenzenes, such as trichloromethylmesitylene (I), dissolve in strong sulfuric acid to give stable dipositive carbonium ions, e.g., II, according to the equation

$$RCCl_{3} + 2H_{2}SO_{4} \longrightarrow RCCl^{2+} + 2HCl + 2HSO_{4}^{-}$$

$$(\nu = 5; \ \gamma = 2)$$

$$H_{3}C \longrightarrow CCl_{3}$$

$$H_{3}C \longrightarrow CH_{3}$$

This conclusion was based mainly on a study of freezing point depressions, which showed that each molecule of RCCl₃ reacts with sulfuric acid to give five particles $(\nu = 5)$, and electrical conductivity measurements which showed that two of the particles are hydrogen sulfate ions $(\gamma = 2)$.

It has been shown recently² that HCl reacts almost quantitatively with sulfuric acid to form chlorosulfuric acid and it was claimed that the reaction of

$$\mathrm{HCl} + 2\mathrm{H}_{2}\mathrm{SO}_{4} = \mathrm{HCl}\mathrm{SO}_{3} + \mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{HSO}_{4}^{-}$$

 $RCCl_3$ with sulfuric acid is in fact

$$\operatorname{RCCl}_{3} + 3\operatorname{H}_{2}\operatorname{SO}_{4} \longrightarrow \operatorname{RCCl}_{2}^{+} + \operatorname{HClSO}_{3} + \operatorname{H}_{3}\operatorname{O}^{+} + 2\operatorname{HSO}_{4}^{-} \quad (\nu = 5; \ \gamma = 2).$$

⁽³⁾ A uniform displacement of 0.13 p.p.m. is explained by the fact that Hart and Fish used benzene as an external standard whereas we have used $(CH_3)_4N^+$ as an internal standard.

⁽⁵⁾ H. Hart and N. R. Roobal, *ibid.*, **86**, 1373 (1964).

⁽¹⁾ H. Hart and R. W. Fish, J. Am. Chem. Soc., 80, 5894 (1958); 82, 5419 (1960); 83, 4460, (1961).

⁽²⁾ R. J. Gillespie and E. A. Robinson, ibid., 86, 5676 (1964).